If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8k^2+49k-49=0
a = 8; b = 49; c = -49;
Δ = b2-4ac
Δ = 492-4·8·(-49)
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-63}{2*8}=\frac{-112}{16} =-7 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+63}{2*8}=\frac{14}{16} =7/8 $
| 49=(10-t)2 | | 10.5*4.5=x | | 408=2c+3c2 | | 3+1x-1.5=1x | | 224=3.14r2 | | 14=9w-2 | | -111a=-37 | | -3-9y=96 | | 4=|-1-s | | 8/3=4/x | | 17=8+72n | | -7x+75=4x-2 | | 4(f+3)+4(f-1)=20 | | -27=-12d-2d2+5 | | -149=-9+10b | | –10−10j=5j−10 | | -20(3n+4)=40 | | 1=34c | | 5=2-p54 | | 1,830=3(p+11)2 | | 20+x=25-6x | | 3(a-8)+2(a+6)=17 | | P+x/2=47 | | 32=2b2 | | 5x+10=16-6x | | -4/5b-7=14 | | 5+2/3b=10 | | 9+3k-5=13 | | 48a+2=5 | | 2(b-6)=-53 | | 76=5a+2-3a-4 | | -3+9f=-66 |